direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C24⋊C5, C2≀C5, AΣL1(𝔽32), C25⋊C5, C24⋊C10, SmallGroup(160,235)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C24⋊C5 — C2×C24⋊C5 |
C24 — C2×C24⋊C5 |
Generators and relations for C2×C24⋊C5
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >
Subgroups: 408 in 82 conjugacy classes, 6 normal (all characteristic)
C1, C2, C2, C22, C5, C23, C10, C24, C24, C25, C24⋊C5, C2×C24⋊C5
Quotients: C1, C2, C5, C10, C24⋊C5, C2×C24⋊C5
Character table of C2×C24⋊C5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | |
size | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ5 | ζ53 | ζ52 | ζ54 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ54 | ζ52 | ζ53 | ζ5 | linear of order 5 |
ρ5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ5 | ζ52 | ζ53 | ζ54 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | linear of order 10 |
ρ6 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ52 | ζ54 | ζ5 | ζ53 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ52 | ζ5 | ζ54 | ζ53 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ53 | ζ54 | ζ5 | ζ52 | linear of order 5 |
ρ9 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ53 | ζ5 | ζ54 | ζ52 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | linear of order 10 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ54 | ζ53 | ζ52 | ζ5 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | linear of order 10 |
ρ11 | 5 | 5 | 1 | -3 | 1 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ12 | 5 | -5 | 1 | -3 | 1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ13 | 5 | -5 | 1 | 1 | -3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ14 | 5 | -5 | -3 | 1 | 1 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ15 | 5 | 5 | -3 | 1 | 1 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ16 | 5 | 5 | 1 | 1 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
(1 8)(2 9)(3 10)(4 6)(5 7)
(1 8)(3 10)
(1 8)(2 9)(4 6)(5 7)
(3 10)(4 6)
(2 9)(4 6)
(1 2 3 4 5)(6 7 8 9 10)
G:=sub<Sym(10)| (1,8)(2,9)(3,10)(4,6)(5,7), (1,8)(3,10), (1,8)(2,9)(4,6)(5,7), (3,10)(4,6), (2,9)(4,6), (1,2,3,4,5)(6,7,8,9,10)>;
G:=Group( (1,8)(2,9)(3,10)(4,6)(5,7), (1,8)(3,10), (1,8)(2,9)(4,6)(5,7), (3,10)(4,6), (2,9)(4,6), (1,2,3,4,5)(6,7,8,9,10) );
G=PermutationGroup([[(1,8),(2,9),(3,10),(4,6),(5,7)], [(1,8),(3,10)], [(1,8),(2,9),(4,6),(5,7)], [(3,10),(4,6)], [(2,9),(4,6)], [(1,2,3,4,5),(6,7,8,9,10)]])
G:=TransitiveGroup(10,14);
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)
(1 11)(2 17)(3 8)(6 16)(7 12)(13 18)
(1 11)(2 7)(4 14)(5 10)(6 16)(9 19)(12 17)(15 20)
(1 16)(2 17)(3 8)(4 14)(5 20)(6 11)(7 12)(9 19)(10 15)(13 18)
(2 12)(3 18)(4 9)(7 17)(8 13)(14 19)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,11)(2,17)(3,8)(6,16)(7,12)(13,18), (1,11)(2,7)(4,14)(5,10)(6,16)(9,19)(12,17)(15,20), (1,16)(2,17)(3,8)(4,14)(5,20)(6,11)(7,12)(9,19)(10,15)(13,18), (2,12)(3,18)(4,9)(7,17)(8,13)(14,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,11)(2,17)(3,8)(6,16)(7,12)(13,18), (1,11)(2,7)(4,14)(5,10)(6,16)(9,19)(12,17)(15,20), (1,16)(2,17)(3,8)(4,14)(5,20)(6,11)(7,12)(9,19)(10,15)(13,18), (2,12)(3,18)(4,9)(7,17)(8,13)(14,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20)], [(1,11),(2,17),(3,8),(6,16),(7,12),(13,18)], [(1,11),(2,7),(4,14),(5,10),(6,16),(9,19),(12,17),(15,20)], [(1,16),(2,17),(3,8),(4,14),(5,20),(6,11),(7,12),(9,19),(10,15),(13,18)], [(2,12),(3,18),(4,9),(7,17),(8,13),(14,19)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,40);
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)
(1 11)(2 17)(3 8)(6 16)(7 12)(13 18)
(1 11)(2 7)(4 14)(5 10)(6 16)(9 19)(12 17)(15 20)
(1 16)(2 17)(3 8)(4 14)(5 20)(6 11)(7 12)(9 19)(10 15)(13 18)
(2 12)(3 18)(4 9)(7 17)(8 13)(14 19)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (1,11)(2,17)(3,8)(6,16)(7,12)(13,18), (1,11)(2,7)(4,14)(5,10)(6,16)(9,19)(12,17)(15,20), (1,16)(2,17)(3,8)(4,14)(5,20)(6,11)(7,12)(9,19)(10,15)(13,18), (2,12)(3,18)(4,9)(7,17)(8,13)(14,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (1,11)(2,17)(3,8)(6,16)(7,12)(13,18), (1,11)(2,7)(4,14)(5,10)(6,16)(9,19)(12,17)(15,20), (1,16)(2,17)(3,8)(4,14)(5,20)(6,11)(7,12)(9,19)(10,15)(13,18), (2,12)(3,18)(4,9)(7,17)(8,13)(14,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15)], [(1,11),(2,17),(3,8),(6,16),(7,12),(13,18)], [(1,11),(2,7),(4,14),(5,10),(6,16),(9,19),(12,17),(15,20)], [(1,16),(2,17),(3,8),(4,14),(5,20),(6,11),(7,12),(9,19),(10,15),(13,18)], [(2,12),(3,18),(4,9),(7,17),(8,13),(14,19)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,41);
(1 17)(2 18)(3 19)(4 20)(5 16)(6 11)(7 12)(8 13)(9 14)(10 15)
(1 13)(3 15)(8 17)(10 19)
(1 13)(2 14)(4 11)(5 12)(6 20)(7 16)(8 17)(9 18)
(3 15)(4 11)(6 20)(10 19)
(2 14)(4 11)(6 20)(9 18)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,17)(2,18)(3,19)(4,20)(5,16)(6,11)(7,12)(8,13)(9,14)(10,15), (1,13)(3,15)(8,17)(10,19), (1,13)(2,14)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18), (3,15)(4,11)(6,20)(10,19), (2,14)(4,11)(6,20)(9,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,16)(6,11)(7,12)(8,13)(9,14)(10,15), (1,13)(3,15)(8,17)(10,19), (1,13)(2,14)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18), (3,15)(4,11)(6,20)(10,19), (2,14)(4,11)(6,20)(9,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,16),(6,11),(7,12),(8,13),(9,14),(10,15)], [(1,13),(3,15),(8,17),(10,19)], [(1,13),(2,14),(4,11),(5,12),(6,20),(7,16),(8,17),(9,18)], [(3,15),(4,11),(6,20),(10,19)], [(2,14),(4,11),(6,20),(9,18)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,44);
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)
(1 11)(3 13)(4 19)(5 20)(6 16)(8 18)(9 14)(10 15)
(1 11)(2 7)(4 9)(5 15)(6 16)(10 20)(12 17)(14 19)
(2 17)(3 8)(4 9)(5 20)(7 12)(10 15)(13 18)(14 19)
(1 16)(2 12)(4 14)(5 20)(6 11)(7 17)(9 19)(10 15)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,11)(3,13)(4,19)(5,20)(6,16)(8,18)(9,14)(10,15), (1,11)(2,7)(4,9)(5,15)(6,16)(10,20)(12,17)(14,19), (2,17)(3,8)(4,9)(5,20)(7,12)(10,15)(13,18)(14,19), (1,16)(2,12)(4,14)(5,20)(6,11)(7,17)(9,19)(10,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,11)(3,13)(4,19)(5,20)(6,16)(8,18)(9,14)(10,15), (1,11)(2,7)(4,9)(5,15)(6,16)(10,20)(12,17)(14,19), (2,17)(3,8)(4,9)(5,20)(7,12)(10,15)(13,18)(14,19), (1,16)(2,12)(4,14)(5,20)(6,11)(7,17)(9,19)(10,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20)], [(1,11),(3,13),(4,19),(5,20),(6,16),(8,18),(9,14),(10,15)], [(1,11),(2,7),(4,9),(5,15),(6,16),(10,20),(12,17),(14,19)], [(2,17),(3,8),(4,9),(5,20),(7,12),(10,15),(13,18),(14,19)], [(1,16),(2,12),(4,14),(5,20),(6,11),(7,17),(9,19),(10,15)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,46);
C2×C24⋊C5 is a maximal subgroup of
C25.D5
C2×C24⋊C5 is a maximal quotient of 2- 1+4.C10
action | f(x) | Disc(f) |
---|---|---|
10T14 | x10-12x8+51x6-96x4+80x2-23 | 210·118·23 |
Matrix representation of C2×C24⋊C5 ►in GL5(ℤ)
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1],[-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C2×C24⋊C5 in GAP, Magma, Sage, TeX
C_2\times C_2^4\rtimes C_5
% in TeX
G:=Group("C2xC2^4:C5");
// GroupNames label
G:=SmallGroup(160,235);
// by ID
G=gap.SmallGroup(160,235);
# by ID
G:=PCGroup([6,-2,-5,-2,2,2,2,728,1089,1660,2711]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations
Export